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In this paper, we propose a new random forest (RF) based ensemble method, FORESTEXTER, to solve the
imbalanced text categorization problems. RF has shown great success in many real-world applications.
However, the problem of learning from text data with class imbalance is a relatively new challenge that
needs to be addressed. A RF algorithm tends to use a simple random sampling of features in building their
decision trees. As a result, it selects many subspaces that contain few, if any, informative features for the
minority class. Furthermore, the Gini measure for data splitting is considered to be skew sensitive and
bias towards the majority class. Due to the inherent complex characteristics of imbalanced text datasets,
learning RF from such data requires new approaches to overcome challenges related to feature subspace
selection and cut-point choice while performing node splitting. To this end, we propose a new tree induc-
tion method that selects splits, both feature subspace selection and splitting criterion, for RF on imbal-
anced text data. The key idea is to stratify features into two groups and to generate effective term
weighting for the features. One group contains positive features for the minority class and the other
one contains the negative features for the majority class. Then, for feature subspace selection, we effec-
tively select features from each group based on the term weights. The advantage of our approach is that
each subspace contains adequate informative features for both minority and majority classes. One differ-
ence between our proposed tree induction method and the classical RF method is that our method uses
Support Vector Machines (SVM) classifier to split the training data into smaller and more balance subsets
at each tree node, and then successively retrains the SVM classifiers on the data partitions to refine the
model while moving down the tree. In this way, we force the classifiers to learn from refined feature sub-
spaces and data subsets to fit the imbalanced data better. Hence, the tree model becomes more robust for
text categorization task with imbalanced dataset. Experimental results on various benchmark imbal-
anced text datasets (Reuters-21578, Ohsumed, and imbalanced 20 newsgroup) consistently demonstrate
the effectiveness of our proposed FORESTEXTER method. The performance of our proposed approach is com-
petitive against the standard random forest and different variants of SVM algorithms.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Text categorization or classification is the task to automatically
classify text documents into predefined categories [1]. Text catego-
rization has many applications such as spam filtering [2], news
organization [3], and user profiling analysis [4]. Given a set of
labeled training documents, the system uses this training set to
build a classifier. The inferred model can then be used to classify
new text documents. A variety of machine learning classifiers have
been applied to this task, including conventional classification
methods such as k-Nearest Neighbors (kNN) [5] and Support Vec-
tor Machines (SVM) [6], and ensemble methods such as boost-
ing-based system (BOOSTEXTER) [7] and various combinations of
Naive Bayes (NB) [8].

Ensemble classification is an active area of research in machine
learning and data mining. An ensemble of classifiers is a set of base
classifiers whose individual decisions are combined in some way to
classify new examples. There are a great number of researches on
ensemble classifier design. One of the most popular approaches for
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Fig. 1. An example of imbalanced dataset with class overlapping and disjoint sets of
data from the same class (so-called small disjuncts).
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constructing classifier ensembles is the random forest method [9].
A random forest (RF) is an ensemble classifier based on a set of
decision tree models trained on randomly selected data subsets
and feature subsets. Each decision tree is built using a bootstrap
sample of the data (data subset selection). Node splitting is based
on the best feature among a set of randomly chosen features (fea-
ture subspace selection). Many studies, both theoretical and
empirical, demonstrate the advantages of the RF method [10–13].
In fact, it has been found to be accurate and computationally feasi-
ble across various data domains [14–17].

Although existing classifier learning and ensemble learning
techniques have shown great success in many text categorization
applications, the problem of learning from imbalanced text data
is a relatively new challenge that has attracted growing attention
from both academia and industry [18–21]. This increased interest
is reflected in the recent installment of several major conferences,
workshops, and special issues [22–24]. The class imbalance prob-
lem occurs when the class of interest (positive or minority class)
is relatively rare in the dataset as compared to the negative or
majority class. The fundamental issue with this problem is the risk
of imbalanced data to significantly compromise the performance of
most conventional learning algorithms. These algorithms assume
or expect balanced class distributions or equal misclassification
costs. Therefore, when these algorithms are presented with com-
plex imbalanced data sets, they fail to properly model the charac-
teristics of the data and affect the classification accuracies across
the classes of the data. In real-world domains, the ratio of the
minority class to the majority classes can by drastic, say 1 to
100, 1 to 1000 or even 1 to 10,000 [20]. For such cases, it is found
that the conventional classifiers tend to ignore the minority
instances and simply classify all instances as the majority class.
As a result, the majority class has close to 100% accuracy while
the minority class has 0–10% accuracy [20].

A recent comparative study [25] shows that the direct applica-
tion of ensemble learning algorithms do not solve the class imbal-
anced problem. Due to the inherent complex characteristics of
imbalanced datasets, learning from such data requires new strate-
gies and technologies to build good base classifiers that achieve a
balanced degree of predictive accuracy for both the minority and
majority classes on the imbalanced text dataset.

In this paper, we propose the FORESTEXTER algorithm for learning
a RF ensemble for imbalanced text categorization. In particular, we
propose a novel stratified sampling method for feature subspace
selection and construct a splitting classifier for data partition at
each node of the tree models in the RF ensemble. Compared to
the simple random sampling method, the stratified sampling
method ensures the features selected in the subspace are more bal-
ance and informative for both the minority and the majority clas-
ses. The conventional tree node splitting criteria, such as
information gain and Gini measure, are considered to be skew sen-
sitive to class imbalance and lead to complex and deeply nested
tree models [26] which are inefficient and ineffective for applica-
tions with imbalanced dataset. In our proposed approach, a super-
vised learning technique is used to learn the splits at the nodes of
the tree. In particular, the Support Vector Machine (SVM) classifier
is used in this study for reasons we would explained in Section 3.1.
The SVM successively partitions the training data into smaller sub-
sets with more balanced class distributions till the data cannot be
further partitioned. In this way, we force the model to learn from
the more effective feature subspaces and data subsets. The model
becomes more robust and fits the class imbalance data better.
Experimental results on benchmark datasets (Reuters-21578,
Ohsumed, and 20 newsgroup) show that our proposed FORESTEXTER

algorithm is effective for the imbalanced text categorization prob-
lem. The performance of the FORESTEXTER algorithm is competitive
against conventional RF and different variants of SVM.
The rest of the paper is organized as follows. In Section 2, we
briefly review the related work. In Section 3, we describe our pro-
posed FORESTEXTER algorithm. In Sections 4 and 5, we describe the
experimental setup and present the results on three imbalanced
text datasets. Finally, we discuss the experimental results and con-
clude with possible future work in Sections 6 and 7.

2. Related work

2.1. The difficulty with imbalanced data classification

A dataset is considered to be imbalanced if the number of
instances in one class greatly outnumbers the number of instances
in the other class. In this paper, we focus on the classification task
on two-class imbalanced dataset. The class with the smaller num-
ber of instances is usually the class of interest (positive or minority
class) from the viewpoint of the learning task, and the class with
the larger number of instances is the negative or majority class.
For example, in a disease diagnostic problem where the disease
cases (minority class) are usually quit rare as compared with nor-
mal ones (majority class).

Most standard learning algorithms are based on the underlying
assumptions of balanced data distributions among classes or equal
misclassification costs. When the data fits the model well, the clas-
sification performance can be very high. However, these algo-
rithms cannot handle the imbalanced datasets. As a result, they
provide severely imbalanced degree of prediction accuracies for
the different classes. In fact, it has been found that the data imbal-
ance issue does not hinder the performance of learning algorithms
by itself. There are other challenges that follow from the general
data imbalance issues such as feature space heterogeneity, class
overlapping, and small disjuncts (i.e., disjoint data sets from the
same class) [20]. These difficulties together with imbalanced data
further hamper the effectiveness of training a conventional classi-
fier model for imbalanced data.

1. Feature space heterogeneity: Generally imbalanced datasets have
uneven distributions of features for minority and majority clas-
ses, where minority class features are very limited. In [27], it is
reported that the values of features relevant to the minority
class are not comparable with those of the features to majority
class. Since most widely used classification algorithms, such as
the naive Bayes and decision tree, rely on measures computed
over the entire feature set to learn classifier, the resulting clas-
sifier models are inevitably affected by the complex nature of
the feature distributions.

2. Class overlapping: Serious class overlapping often leads to poor
classification performance [28]. Consider the data distribution
shown in Fig. 1, where the ‘‘+’’ and ‘‘�’’ represent the positive
and negative instances of the minority and majority classes,
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respectively. Positive and negative instances are within the cir-
cular regions 1 and 2. As a result, it is likely that the positive
instances will be misclassified as negative class. This issue is
often observed in imbalanced data classification tasks where
limited minority class instances are dispersed in different
region of the feature spaces.

3. Small disjuncts: The problem of small disjuncts has been shown
to significantly depreciate classification performance [29] when
the minority class has multiple subconcepts. Fig. 1 shows a
within-class imbalanced minority class with two subconcepts
(regions 1 and 2). In this case, classifiers have to learn both
the subconcepts of the minority class. Unlabeled instances in
region 2 are misclassified more often than those from the region
1 because region 2 has a relative small number of instances.

In order to deal with imbalanced data, many techniques have
been developed. Typically, the techniques to handle the class
imbalance problem can be grouped into two classes: data level
methods and algorithmic level methods [30,20,25]. For data level
methods, the solutions involve a preprocessing step to re-balance
the data distribution by under-sampling the majority class [31]
or by over-sampling the minority one [32,33] in order to decrease
the effect of the skewed class distribution in the dataset. For algo-
rithmic level methods, the solutions extend and customize existing
machine learning algorithms for class imbalance problem by shift-
ing the bias of a classifier to favor the minority class, such as cost-
sensitive learning [34,35] and recognition-based learning [36,37].

2.2. Random forest

The random forest (RF) is an ensemble classifier consisting of a
collection of tree-structured base classifiers. The concept of build-
ing multiple decision trees was first introduced by Williams [38].
Ho [39] then developed the idea of using a subspace of features
for each tree construction during the ensemble process. Dietterich
[40] proposed a random splits strategy for tree construction. Sub-
sequently, Breiman [9] formulated the RF algorithm, which intro-
duces further randomness into the ensemble process. This
process is accomplished by using bootstrap sample of the data sub-
sets and random sample of feature subspaces to build multiple
decision trees. The RF algorithm associated with a set of training
documents D and Nf features can be described as follows:

1. Use bagging to generate K subsets {D1;D2; . . . ;DK } by randomly
sampling D with replacement.

2. For each data set Dk, one builds a decision tree model. During
decision tree construction, randomly sample a subspace of mtry
dimension (mtry� Nf ) from the available features present in
the training documents at each node. Compute all possible
splits based on the mtry features. The data partitions from the
best split (e.g., the largest Gini measure) are used to generate
child nodes. Repeat this process until a stopping criterion is
met: e.g., the local learning documents are homogeneous with
respect to the class or the number of documents is less than
nmin.

3. Combine the K unpruned trees h1ðX1Þ;h2ðX2Þ; . . . ;hKðXKÞ into a
random forest ensemble, and use the majority votes among
the trees for classification decision.

As stated in the introduction, the RF ensemble method is known
to increase the accuracy of single decision tree classifiers by return-
ing a classification decision based on the decisions from all the deci-
sion trees. However, directly applying the RF model to imbalanced
datasets does not solve the class imbalance problem in the decision
tree classifiers by themselves. The challenging issue is that the
random feature subspace selection and the corresponding Gini
splitting criterion involved in splitting a tree node are considered
to be highly skew sensitive to class imbalance.

� Random feature subspace selection: Text data are usually high
dimensional. A large number of features (negative features)
are often not informative to the minority class of interest. Only
a few positive features are relevant to the minority class [41]. RF
algorithm tends to use a simple random sampling of features
and to select many subspaces that contain few information
positive features in building their decision trees. In Fig. 2a,
one observes that the chance that an informative positive fea-
ture is randomly included into a feature subspace decreases as
the number of the total features increases. In Fig. 2b, one
observes that the performance of RF first increases and then
decreases with increasing number of total features. One plausi-
ble reason for these observations is that the lack of informative
features in the selected subspaces affects the RF performance.
� Gini splitting criterion: One way of representing text data uti-

lizes term frequencies and document frequencies. As it turns
out, the values of positive features are not comparable with
the negative features due to the imbalanced document frequen-
cies for majority and minority classes. Decision tree models,
such as CART (Classification and Regression Tree) and C4.5 (suc-
cessor of the ID3 (Iterative Dichotomiser 3) decision tree algo-
rithm), using either information gain or Gini measure splitting
criterion, require discrete inputs (using static discretization
for continuous features). Moreover, it requires the feature space
to be divided into axis-parallel rectangles. When there is class
imbalance in the dataset, the Gini measure has a strong bias
towards features of majority class. The resulting tree topology
and its corresponding space partitions are far more complex
than class balanced datasets. One observes that a balanced
and well-separated labeled data has simple decision tree
boundaries in Fig. 3a. While on the dataset with a more skewed
distribution (as shown in Fig. 3b), decision tree has a relative
complex decision tree boundary. This type of boundaries
(axis-parallel to the axes) usually leads to highly nested deci-
sion trees. On the other hand, the dashed lines boundaries of
SVM (oblique orientations to the axes) are more simple and
more effective.

2.3. Support Vector Machine

Support Vector Machine (SVM) finds the optimal margin hyper-
plane as the decision boundary that best separates a binary-class
dataset based on the structural risk minimization principle [42].
Given a training dataset fðxi; yiÞg

M
i¼1 where xi 2 RN and

yi 2 f�1;1g, one minimizes the following function:

gðw; nÞ ¼ 1
2
kwk2 þ C

X
i

ni ð1Þ

subject to:

yiððw � /ðxiÞÞ þ bÞP 1� ni

where C is the regularization coefficient and ni; i ¼ 1; � � � ;M, are
slack variables to measure the degree of misclassification of xi. Ref-
erence [43] gives an elementary introduction to the SVM method.

SVM has been shown to be an accurate classifier model for text
categorization under balance distribution. Joachims [6,44,45] pro-
vides both theoretical and empirical evidences that SVM is very
suitable for text categorization. He compared SVM with other clas-
sification methods and showed that SVM is competitive against the
other tested classifiers in the experiments. However, when the
class distribution is too imbalanced, the SVM performance may
bias to the majority class. In Eq. (1), minimizing the first term
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kwk2=2 is equivalent to maximizing the margin, while minimizing
the second term

P
ini amounts to minimizing the associated error.

The parameter C is to establish a balance between maximizing the
margin and minimizing the error. This approach works well in the
class balance datasets, but usually fails in situations with a high
degree of class imbalance. The SVM classifier tends to simply clas-
sify all the instances as majority class because it results in largest
margin and only suffers a small amount of cumulative error on
the instances of minority class. This results in ineffectiveness of
SVM in imbalance text categorization. There have been many
works in the community that apply general sampling techniques
to the SVM framework to handle imbalanced datasets [46–49].
3. FORESTEXTER

In this section, we first provide an overview of our proposed
learning method for imbalanced data. Then, we discuss the positive
and negative features used for feature subspace selection in RF.
After that, we introduce a stratified sampling method. Finally, we
describe in detail the new random forest algorithm, the FORESTEXTER,
for imbalanced text categorization.
3.1. Hybrid method for learning from imbalanced data

We propose a novel and yet simple method to deal with the
problem of model misfit in class imbalance learning. Our proposed
approach is motivated by the tree model in RF and the SVM model
for text categorization. It is a hybrid classification approach that
combines the SVM and tree structured recursive partition tech-
niques. A SVM offers two main advantages for text classification.
The main advantage of using the SVM classifier, as previously
pointed out, is that the SVM decision boundary is usually more
simple and straightforward compared with those of the boundary
of decision tree. Also, it has been shown that SVM can scale up
to considerable dimensionality. It is effective for data splitting in
the presence of very large number of features (or feature sub-
space). For high dimensional text classification problems, it is a rel-
atively robust and flexible model compared to other methods, such
as neural networks [50,6]. Although the SVM model does not fit the
imbalance data well, tree model can be used together with SVM to
improve the performance of the SVM classifier for imbalanced text
categorization.

The resulting SVM-based tree model is a new tree induction
algorithm and is very effective for imbalanced text categorization.
A SVM-based tree model builds a hierarchal tree for classification
according to the classical top-down procedure. To construct the
tree, one follows a successive splitting procedure. It begins with
the training of a SVM classifier on the entire dataset at the root
node. Then, the induced SVM classifier divides the training data
into subsets (or sub-regions) for prediction. However, model misfit
generally leads to poor prediction performance. In order to
improve the performance, we retrain SVM sub-classifiers using
the training instances in the sub-regions. The retraining procedure
consists of two steps: feature subspace selection and splitting choice.
The feature subspace selection employs a stratified sampling
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strategy in which the features for majority and minority are
selected in a balanced way. The splitting choice trains a SVM classi-
fier based on the selected feature subspace and the data subset at
the node for further data partitioning. Instances are classified to
the child node that maximizes the estimated relevance. The train-
ing dataset is recursively partitioned into smaller subsets while
moving down the tree. This process continues until the remaining
instances at the node cannot be further split by the classifiers. In
this way, we force the classifier to learn from feature subspaces
and data sub-regions that are more balance with respect to the
data class distribution, making the entire classification model more
robust for handling the feature space heterogeneity, class overlap-
ping, and small disjuncts problems in imbalanced data.

In Fig. 4, one observes that a SVM-based tree partitions the data
into more (class) homogeneous subsets. After building a classifier,
one obtains decision boundaries shown with dashed circles. There
is a decrease in class imbalance. Then, we build two sub-classifiers
to further partition the instances. The solid circles are the new
decision boundaries. We perform this process recursively to refine
the classification boundaries and improve its performance for the
imbalanced data. The resulting decision boundaries of the SVM-
based tree approach are more effective compared to conventional
decision tree method for imbalanced text categorization. To boost
the predicting performance further, we extend the SVM-based tree
model using an ensemble approach utilizing the random forest
framework. In general, the RF ensemble framework is considered
more robust than a single tree model. One advantage of the RF
framework is that all the tree models can be trained in parallel.
Meanwhile, RF blends elements of random subspaces and bagging.
Due to the subspace sampling technique, RF generates trees very
rapidly. It has also been found that RF is able to offer an increase
in accuracy over bagging and boosting decision trees in learning
from high dimensional data [51].

3.2. Positive and negative features

In a text categorization task, the documents are represented by
a bag-of-words model. In other words, the document is repre-
sented by a vector, of dimension the size of the vocabulary, con-
taining word frequency counts. Vocabularies of hundreds of
thousands of words are common, hence the document vectors
are usually of high dimensions. Feature selection has been applied
to the text categorization task to improve classification effective-
ness and computational efficiency. A number of feature selection
metrics have been explored in text categorization, such as informa-
tion gain, mutual information, and chi-square (v2). Empirical stud-
ies have shown that these metrics are useful for improving the
performance of k-nearest neighbors (kNN), linear least squares fit
(LLSF) and naive Bayes (NB) [5]. Extensive surveys and comparative
studies of feature selection and term weighting methods for text
categorization are found in [5,52–54].
Fig. 4. An example of classification predictions based on the hybrid method of
random forest and SVM.
Our approach models the feature subspace selection in RF as a
feature selection and term weighting problem. We can make use
of the idea in positive and negative features and stratified sampling
to solve the subspace selection problem.

Let T be a set of Nf features (or terms) {t1; t2; . . . ; tNf
}, and c be

the class of interest. We first compute the following four depen-
dency tuples ðA1;A2;A3;A4Þ to examine the relationship between
features and classes (see Table 1). A1 denotes the number of times
a feature ti and a class c co-occur. A4 denotes the number of times
that neither ti nor c appears in a document. These two elements
represent the positive membership of ti in c. On the other hand,
A2 and A3 denote their negative membership (non-membership)
that ti occurs without the occurrence of category c, and category
c occurs without the occurrence of feature ti, respectively. Then,
we perform a Boolean test to stratify the feature set T into two
groups, one group containing positive features and the other one
containing negative features, as follows:

signðti; cÞ ¼ pos; if A1A4 � A2A3 P 0;
signðti; cÞ ¼ neg; otherwise:

�

where ti is a feature term taken from T, and signðti; cÞ is a function of
ðA1;A2;A3;A4Þ to determine whether there is any correlation
between feature ti and class c. Hence, it establishes whether ti is a
positive (pos) or a negative (neg) feature.

Based on the signðti; cÞ function, we then stratify the feature set
T into two groups: Tp and Tn, as follows:

Tp ¼ fti 2 Tjsignðti; cÞ is positiveg

and

Tn ¼ fti 2 Tjsignðti; cÞ is negativeg:

where T ¼ Tp [ Tn and Tp \ Tn ¼ ;. Without loss of generality, we
define the set of positive features as Tp ¼ ft1; t2; . . . ; tNpg and the
negative feature set as Tn ¼ ftNpþ1; . . . ; tNpþNng to be used in Sec-
tion 3.3. Np and Nn are the number of positive and negative features,
respectively. The total number of features Nf is Np þ Nn.

Zheng et al. [27] considered the correlations between positive
and negative features. They evaluated the performance of combin-
ing the positive and negative features for text categorization. In
this study, we further investigate the distributions of these two
types of features. Specifically, we use v2 statistics to compute their
term weight. The v2 statistic of a term ti with respect to c is defined
as follows [55]:

v2ðti; cÞ ¼
N � ðA1A4 � A2A3Þ2

ðA1 þ A3ÞðA2 þ A4ÞðA1 þ A2ÞðA3 þ A4Þ
ð2Þ

where N is the total number of documents.
The term weight quantifies how much term ti contributes to the

discriminative semantics of the class of interest c. Features with
less discriminative power have small weights, while features with
large discriminative capability get large weights. Some features
may have very small or even zero weights. To prevent a large frac-
tion of features from getting essentially zero weight, we set the
lowest weight to a small positive value 1=Nf , where Nf is the num-
ber of features.
Table 1
Relationship of feature ti and category c.

Presence of ti Absence of ti

Labeled as c A1 A3

Not labeled as c, i.e., �c A2 A4
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3.3. Stratified sampling method

The stratified sampling method for feature subspace selection is
accomplished by the following procedure:

(i) Partition the set of features in T into positive features Tp and
negative features Tn, and consider a non-negative function u
(in this study, we use v2 statistics as the u function) to mea-
sure the term weight of both positive and negative features;

(ii) Normalize the term weight for these two types of features
separately. For positive features ti 2 Tp, their corresponding

normalized ui is computed as hi ¼ ui=
PNp

k¼1uk; for negative

features ti 2 Tn, we have hi ¼ ui=
PNf

k¼Npþ1uk. The normalized

weighting value hi is in the range of 0 and 1.
(iii) Select mtryp ¼ mtry� Np

Nf
features from Tp and

mtryn ¼ mtry�mtryp features from Tn according to their
normalized weight values, are then merge them to form a
subspace with mtry features for tree construction. mtry is
specified to contain at least one from each group.

For imbalanced text categorization, the weights of positive and
negative features are not necessarily comparable with each other
due to the class imbalance of majority class and minority class.
In general, features for the majority class have higher chance to
obtain a larger weight. Consider the term weight values in Table 2.
The maximum v2 term weights of positive and negative features
for different classes of the Reuters-21578, Ohsumed, and imbal-
anced 20 newsgroup datasets are listed, where ‘‘+’’ and ‘‘�’’ repre-
sent the positive and negative features, respectively. One observes
that the weights of positive and negative features associated with
different categories can be very different. Therefore, the positive
and negative features are normalized and selected separately in
our approach. In this way, we guarantee that the subspace at any
node contains both positive and negative features. The selected
features are determined by their weights. This means that, in prin-
ciple, the features selected in the subspace are more informative
for imbalanced text categorization than those selected by a simple
random sampling method.
Table 2
Maximum term weight values (based on v2 statistics) of positive and negative features wi
newsgroup datasets.

Reuters-21578 Ohsumed

Id max v2 Id max v2

+ � +

1 3357.0 592.7 1 271.0
2 1401.3 906.7 2 3720.0
4 2337.2 122.1 4 865.0
6 1285.6 78.1 6 1010.0
8 4674.9 47.7 8 2850.0
10 3063.1 34.0 9 2670.0
12 2252.2 29.2 10 2260.0
14 5103.3 21.5 11 3190.0
16 3016.3 20.0 12 814.0
18 2770.6 22.1 13 3760.0
20 3786.1 27.2 14 1630.0
22 634.2 18.7 15 1670.0
24 3191.7 9.9 16 841.0
26 3266.1 6.6 17 2400.0
28 1127.2 11.2 18 1370.0
30 2224.7 6.8 19 3770.0
32 3053.8 6.3 20 1590.0
34 2091.6 5.0 21 1180.0
38 2944.5 3.7 22 991.0
40 3925.3 2.9 23 3590.0
3.4. The FORESTEXTER Algorithm

Our proposed FORESTEXTER algorithm involves training an ensem-
ble of SVM-based trees using the RF framework for imbalanced text
categorization. Compared to single SVM-based tree classification
model, the RF-based ensemble approach is more robust for classi-
fication. Specifically, the FORESTEXTER algorithm constructs an
ensemble of our proposed SVM-based trees from training docu-
ments D using a set of Nf features T ¼ ft1; t2; . . . ; tNf

g is summa-
rized as follows:

1. Divide the feature set T into positive features and negative fea-
tures Tp and Tn, and compute their normalized term weight hi.

2. Use bagging method to generate K data subsets {D1;D2; . . . ;DK }
from D.

3. Build SVM-based tree model hiðDiÞ for each data set Di in a top-
down manner. At each node, use stratified sampling method to
select a subspace of mtry features (or dimension) from Tp and Tn

according to their term weight hi. Train a SVM classifier at each
node with the feature subspace and Di at the node. This process
continues until a stopping criterion is met: all documents
belong to the same class or the documents cannot be further
split by the induced classifier.

4. Combine the K unpruned trees h1ðD1Þ;h2ðD2Þ; . . . ; hKðDKÞ into an
ensemble classifier, and use the majority votes to make classifi-
cation prediction.

There are two parameters for the FORESTEXTER algorithm: the
subspace dimension mtry and the number of trees K. In general,
it is necessary to construct more trees for more complex learning
problems. The value of mtry controls the strength and random-
ness of the generated trees. By setting mtry ¼ Nf , in essence we
are using a decision tree model. With mtry ¼ 1, we produce com-
pletely random trees. FORESTEXTER algorithm constructs an ensem-
ble of hierarchical tree models using SVM classifier at each node.
In practice we find that the SVM parameters at each node do not
require fine-tuning. In the experiments, we simply use default
SVM parameters for tree construction, and we find this to work
well.
th respect to different categories on the Reuters-21578, Ohsumed and imbalanced 20

Imbalanced 20 newsgroup

Id max v2

� + �

82.5 1 327.3 92.8
216.0 2 338.2 68.2
108.0 3 426.9 16.9

66.4 4 128.9 20.9
41.0 5 253.0 10.9
44.6 6 223.8 31.1
73.4 7 367.3 94.6
52.8 8 499.6 6.6
55.8 9 609.1 5.8
36.2 10 360.7 19.5
42.8 11 582.3 5.2
26.0 12 686.1 10.3
39.7 13 145.0 4.1
35.5 14 404.2 3.5
16.7 15 181.7 2.8
33.7 16 312.2 12.3
25.8 17 486.7 2.6
25.5 18 584.8 2.8

159.0 19 503.4 2.6
14.1 20 586.0 1.5



Table 3
A collections used in our empirical study.

Data set Documents Terms Classes

Training Test

Reuters-21578 5891 2312 18,933 40
Ohsumed 6286 7643 14,503 23
Imbalanced 20NG 11,314 7532 26,214 20
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The FORESTEXTER algorithm perform classification for an unseen
instance xi using a top-down manner to navigate the instance xi

through the trees to their leaf nodes. Each tree produces a vector
of relevant scores for classification by accumulating the probability
outputs of the SVM classifiers in the decision path xi traversed.
Specifically, let N be the set of nodes in the decision path,
Probnðxi; cÞ be the probability output of xi to class c given by the
SVM classifier in node n. We compute the relevant scores for clas-
sification as follows: Probðxi; cÞ ¼

P
n2NProbnðxi; cÞ. This procedure

is iterated over all trees in the ensemble. The prediction over all the
trees are combined as the ensemble prediction.

Our proposed FORESTEXTER approach is different from the Random
Forest (RF) algorithm proposed in [9] and the Stratified Random
Forest (SRF) algorithm proposed in [56]. The RF algorithm [9] uses
a simple random sampling of feature subspace and Gini gain split-
ting strategy in building their decision trees. The SRF algorithm
[56] employs the stratified sampling method to select strong and
weak features. The linear discriminative analysis (LDA) model is
employed in SRF as the splitting function in the nodes of the trees.
Our stratified sampling method, on the other hand, is based on
positive and negative features and their term weights. Moreover,
we use a SVM classifier at each node for tree construction.
3.5. Computational complexity

Given a training data set containing N documents and Nf feature
terms, the computational cost (i.e., the time required to solve a
problem) for obtaining the positive and negative feature stratifica-
tion and v2 term weighting is OðNÞ for one feature. In case of Nf

features, the cost is OðNNf Þ. The computational cost is linear and
depending on the number of documents and feature terms. Note
that this step is performed before learning the ensemble model.
The complexity of learning our proposed tree ensemble model
depends on the number of nodes in the trees that are required to
construct SVM classifiers. To simplify the analysis, we assume that
the tree is a binary tree with tree height h. The total number of
nodes in the tree is up to Oð2hÞ (each internal node has two
branches). At each node, the cost of training a SVM classifier is
f ðmÞ � Oðm2Þ [57], where m is the number of training documents
available at the node and m� N. Then, the overall complexity
for building a tree model with height h is Oðm22hÞ. In fact, a precise
complexity analysis is hard to achieve because the tree height
depends on many factors. If the tree structure is extremely imbal-
anced, the tree height h will be about OðNÞ. In this case, the com-
plexity is OðN22NÞ. In general, for a balanced tree, h is about
Oð

ffiffiffiffi
N
p
Þ. This leads to a computational complexity of OðN22

ffiffiffi
N
p
Þ for

one tree, and OðKN22
ffiffiffi
N
p
Þ for K trees.
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4. Experimental setup

To evaluate the performance of the proposed FORESTEXTER
algorithm, we conduct experiments on three commonly used cor-
pora for text categorization: Reuters-21578,1 Ohsumed,2 and 20
newsgroup.3 A summarized description of these three text collec-
tions is given in Table 3.

The Reuters-21578 corpus consists of 21,578 news articles
taken from Reuters newswire. We use the ‘‘ModApte’’ split and dis-
card those documents with multiple category labels and those cat-
egories less than 10 documents. This leaves us with 8203
documents in 40 categories. There are 5891 training documents
and 2312 testing documents. After preprocessing (stemming and
1 http://www.research.att.com/lewis.
2 ftp://medir.ohsu.edu/pub/ohsumed.
3 http://qwone.com/jason/20Newsgroups/.
stop-words filtering), this corpus contains 18,933 distinct features.
The distribution of the number of documents across different cat-
egories in this data set is highly imbalanced (see Fig. 5).

The second text collection is the Ohsumed corpus compiled by
William Hersh. It is a set of 348,566 medline documents consisting
of titles and/or abstracts from 270 medical journals over 1987–
1991. Following [6], we use the subset consisting of the first
10,000 documents from the medical abstract of the year 1991 for
training and the second 10,000 documents for testing. After stem-
ming and removing stop-words, the training corpus of Ohsumed
contains 14,503 distinct features which occur in at least three doc-
uments. We consider the classification task for 23 MeSH ‘‘diseases’’
categories where the class distribution of these categories is also
highly imbalanced.

20 Newsgroup (20NG) is a data collection with almost equal
data distribution across all classes. It consists of 19,997 news doc-
uments partitioned (nearly) evenly across 20 different news-
groups. There are three versions of the dataset (original version,
bydate version, and the cross-post version). We use the ‘‘bydata’’
version (the data was split into training (60%) and test (40%) sets,
and the duplicates and headers were removed) as in [58,59]. Note
that the ‘‘bydate’’ version is easier for cross-experiment compari-
son. After preprocessing, the training set contains 26,214 distinct
features. However, in this paper, we focus on class imbalanced
problem. In order to generate an imbalanced 20NG data collection,
we eliminate instances in different classes to generate an imbal-
anced class distribution. After that, the number of documents in
different categories of the new 20NG ranges from 10 to 500. This
new dataset class distribution is highly imbalanced. It is quite dif-
ferent from the original 20NG dataset (see Fig. 5).

The three collections are quite different in document length.
Reuters-21578 and Ohsumed consist of relative short documents,
the length of which are around 800 bytes on average, while the
20NG collection consists of relatively long documents having about
1800 bytes on average. The term frequency (TF) representation for
these datasets in Matlab format is available at http://www.zju-
Category Id

Fig. 5. The percentage of documents associated with different classes in the
training set.
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cadcg.cn/dengcai/Data/TextData.html. For each dataset, we com-
pute the term frequency-inverse document frequency (TF-IDF) rep-
resentation as follows: ð1þ log tf Þ � log N=df , where N is the total
number of documents, tf and df are the term frequency and the
document frequency, respectively.

One of the simple methods to overcome the imbalanced issue in
a classification task is the sampling methods. The motivation of
using sampling methods in imbalanced learning is to modify the
imbalanced dataset to achieve a balanced dataset. Random under-
sampling method selects a subset of the original data-set with bal-
ance class distribution by randomly eliminating instances from the
majority class. On the other hand, random oversampling method
creates a superset of the original data-set by randomly replicating
minority class instances. The main advantage of these techniques
is that they are independent of the underlying classifier. In our
experiments, we combine random undersampling and random
oversampling techniques with SVM classifier as the performance
baselines.

We use the linear SVM classifier implemented in LibSVM.4 The
value of the regularization parameter C is selected from
f2�5;2�3; . . . ;215g. The optimal regularization parameter is chosen
using a 3-fold cross-validation on the training set. For our FORESTEXTER

algorithm, we use v2 as the term weight function when computing a
feature stratification, and employ a linear SVM with default param-
eter value C ¼ 1:0 as splitting criterion while splitting a tree node.
For the number of trees K and the subspace dimension mtry, we fol-
low the setting in [56] and use mtry ¼ Nf =10 and K ¼ 100 in stan-
dard RF and FORESTEXTER, where Nf is the total number of features
in the dataset.

5. Experimental results

In this section, we present experimental results to compare the
performance of the proposed FORESTEXTER algorithm with other
learning algorithms: standard RF and three variants of SVM algo-
rithms (standard SVM, undersampling SVM, and oversampling
SVM) on the Reuters-21578, Ohsumed and the imbalanced 20NG
data collections. We show that performance of the proposed algo-
rithm is competitive against these algorithms.

5.1. Evaluation measures

The classifiers may have a high overall accuracy with the major-
ity class having close to 100% accuracy and the minority class hav-
ing close to 0–10% because overall accuracy is biased towards the
majority class. Hence, accuracy measure is not a proper evaluation
metric for class imbalance problem. We use the AUC, the area
under the receiver operating characteristics (ROC) curve [60], for
evaluation. AUC has been proven to be a reliable performance mea-
sure for imbalanced and cost-sensitive problems [61].

Suppose we have two different outcomes for a binary class eval-
uation Bðtp rate; fp rateÞ with respect to the class of interest c,
where tp (true positive) rate is the rate of documents correctly
assigned to the class c, i.e.,

tp rate ¼ Positive instances correctly classified
Total positive instances

;

and fp (false positive) rate is the rate of documents that belong to �c
but are assigned to c, i.e.,

fp rate ¼ Negative instances incorrectly classified
Total negative instances

:

4 Available at http://www.csie.ntu.edu.tw/cjlin/libSVM/.
ROC graph is a two-dimensional graph in which fp rate is plotted on
the X axis and tp rate is plotted on the Y axis. In classification eval-
uation, the classifier model produces a continuous output (i.e., an
estimate of an instance’s class membership probability) to which
different thresholds are applied to predict class membership. If
the classifier output is above the threshold, the classifier predicts
the instance as class c, else �c. In this way, each threshold value pro-
duces a different prediction result to compute the results of
Bðtp rate; fp rateÞ. Each of the thresholds corresponds to a different
point in ROC space. Conceptually, we can imagine varying a thresh-
old from �1 to þ1 and tracing a curve through ROC space, and cal-
culate the area under the ROC curve to evaluate the strength of a
classifier across various thresholds.

5.2. Positive and negative features

We investigate the skewness of the positive and negative fea-
tures associated with different categories. The term weight values
of positive and negative features in the Reuters-21578 dataset are
shown in Fig. 6. We observe that the distributions of the positive
and negative features with respect to different categories are quite
different from each other. The result implies that these two feature
types should be separately considered in the feature subspace
selection while building the tree models. We sort the categories
in descending order according to the number of instances associ-
ated with the classes. Then, we show the percentage of positive
and negative instances in the classes. The results are given in
Fig. 7. We observe that the percentage of positive (negative) fea-
tures decreases (increases) as the number of learning class index
increases.

In summary, the numbers and distributions of positive and neg-
ative features in imbalanced text datasets are highly skewed. A
simple random sampling method for feature subspace selection
in RF, treating all features equally, is not effective for imbalanced
datasets.

5.3. Comparison results on imbalanced text collections

Next, we present the results for the binary classification task on
the Reuters, Ohsumed and imbalanced 20NG collections. We con-
vert the multi-class text classification problem into a set of binary
class problems. We compare the performance of different algo-
rithms on the binary classification problems. The performance is
measured using AUC averaging over different binary classification
problems. The results are given in Table 4, where the number in
brackets behind the performance value represents the rank of the
method on the corresponding data set. Each row in the table shows
the results of different algorithms on a dataset. For each dataset,
the compared algorithms are ranked in a decreasing order based
on their performance. The number in boldface represents the best
average AUG of the compared methods.

We can see from Table 4 that FORESTEXTER performs best on all
three datasets followed by the different variants of SVM methods.
The standard RF method performs the worst among the five com-
pared algorithms on the Reuters-21578 and imbalanced 20NG.
This is consistent with our earlier assertions that RF using the sim-
ple random sampling and the Gini measure is not reliable for for
imbalanced text categorization. In comparison, undersampling
SVM is the second best method on the Reuters-21578, whilst over-
sampling SVM is the second best method, slightly outperforming
standard SVM, on the Ohsumed and imbalanced 20NG datasets.
From Table 4, it is evident that the undersampling and oversam-
pling version for SVM do not consistently outperform the standard
SVM. SVM has the same performance as the oversampling SVM on
Reuters-21578 and imbalanced 20NG. Recent studies [62,63] have
shown that classifiers induced from certain imbalanced datasets
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Fig. 6. The term weight values of positive and negative features associated with different categories in Reuters-21578 collection, where v2 statistic is used as term weight
measure; (a–c) are the distributions of positive feature, and (d–f) are the distributions of negative feature in the 1st, 5th, 10th classes.
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Fig. 7. The percentage of positive and negative features in the training set: (a) Reuters-21578; (b) Ohsumed; (c) imbalanced 20NG.

Table 4
Average AUC results of different learning algorithms on the Reuters-21578, Ohsumed and imbalanced 20NG datasets.

Dataset VM Under-SVM Over-SVM RF FORESTEXTER

Reuters-21578 0.9755(3) 0.9915(2) 0.9753(4) 0.9593(5) 0.9920(1)
Ohsumed 0.9210(4) 0.9061(5) 0.9379(2) 0.9338(3) 0.9465(1)
Imbalanced 20NG 0.9375(2) 0.9216(4) 0.9375(2) 0.9085(5) 0.9438(1)
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are comparable to classifiers induced from the same dataset bal-
anced by sampling techniques. The results from our experiments
are in concordance with these studies.

The above experimental results demonstrate the effectiveness
of our proposed FORESTEXTER algorithm for learning imbalanced text
datasets converted into multiple binary classification problems.
We note that learning the minority classes with only a small num-
ber of associated instances is the most interesting case for our algo-
rithm because it handles the cases where the data distribution of
classes is highly imbalanced. In order to validate this point, we
divide the classes of the datasets into three bins (or groups)
according to the number of positive instances associated with
the classes. The first bin (Bin1) contains large-size classes with a
lot of instance included. The second bin (Bin2) consists of med-
ium-size classes with a reasonable numbers of instances. The third
bin (Bin3) consists of small-size classes such that the number of
instances are insufficient for training a good model. For example,
the classes in the first bin of the Reuters-21578 data collection
(Bin1) are the largest three size classes containing most of the
instances, i.e., fc1; c2; c3g. The number of positive instances in these



Table 5
Average AUC results of different learning algorithms with respect to different sizes of categories on Reuters-21578.

#Classes #Docs SVM Under-SVM Over-SVM RF FORESTEXTER

Bin1 (c1–c3) P320 0.9961(2) 0.9946(4) 0.9961(2) 0.9925(5) 0.9968(1)
Bin2 (c4–c10) 90–320 0.9952(2) 0.9922(4) 0.9942(3) 0.9899(5) 0.9963(1)
Bin3 (c11–c40) 10–90 0.9698(3) 0.9901(2) 0.9698(3) 0.9500(5) 0.9908(1)

Table 6
Average AUC results of different learning algorithms with respect to different sizes of categories on Ohsumed.

#Classes #Docs SVM Under-SVM Over-SVM RF FORESTEXTER

Bin1 (c1–c3) P1000 0.8929(2) 0.8671(5) 0.8784(4) 0.8808(3) 0.8961(1)
Bin2 (c4–c10) 101–1000 0.9356(4) 0.9262(5) 0.9465(2) 0.9423(3) 0.9533(1)
Bin3 (c11–c23) 10–100 0.9197(4) 0.9043(5) 0.9470(2) 0.9415(3) 0.9545(1)

Table 7
Average AUC results of different learning algorithms with respect to different sizes of categories on imbalanced 20NG.

#Classes #Docs SVM Under-SVM Over-SVM RF FORESTEXTER

Bin1 (c1–c3) P200 0.9641(1) 0.9593(4) 0.9641(1) 0.9378(5) 0.9638(3)
Bin2 (c4–c10) 70–200 0.9602(2) 0.9489(4) 0.9602(2) 0.9200(5) 0.9606(1)
Bin3 (c11–c20) 10–70 0.9136(2) 0.8911(5) 0.9136(2) 0.8916(4) 0.9278(1)

Table 8
Number of positive and negative documents and features with respect to different class bins on Reuters-21578.

Bin1 (c1–c2) Bin2 (c3–c9) Bin3 (c10–c14) Bin4 (c15–c40)

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.

Number of features 6299 12615 3197 15717 1492 17422 739 18175
Proportion of features 0.333 0.667 0.169 0.831 0.079 0.921 0.039 0.961

Number of documents 2054 3837 150 5741 55 5836 18 5873
Proportion of documents 0.349 0.651 0.025 0.975 0.009 0.991 0.003 0.997

114 Q. Wu et al. / Knowledge-Based Systems 67 (2014) 105–116
classes are larger than 320. On the other hand, the size of classes of
the second bin (Bin2) is relatively small as compared to the classes
in Bin1. The number of instances of these classes is in the range of
90 to 320. Finally, the third bin (Bin3) contains classes much smal-
ler than those in Bin1 and Bin2. The number of instances in these
classes is ranging from 10 to 50.

We compare the average AUC of different algorithms over the
categories within each bin. The results are shown in Tables 5–7
for Reuters-21578, Ohsumed, and imbalanced 20NG, respectively.
We rank the performance of the algorithms in a decreasing order.
The performance ranking of the methods are given in brackets. The
numbers in boldface indicate the best average AUG obtained by
the compared algorithms. We observe that the performance of
FORESTEXTER is competitive against the other tested algorithms
across all three datasets. Moreover, one observes the results in
the last rows of Tables 5–7 show that our proposed method out-
performs the other tested methods in classes with small number
of instances. The results illustrate our method works well on
minority classes with only a small number of instances.

6. Discussion

The fundamental issue of the imbalanced classes in learning is
how to improve the performance of learning algorithms on minor-
ity classes [20]. Most of the standard algorithms assume that the
class distributions are balanced, and they fail to properly account
for the unequal characteristics of the data samples and features
of the minority classes.

Similar to the last experimental design in the previous section,
we divide the classes of the Reuters-21578 into different bins in
which the Bin1 is for the largest two classes (c1–c2), Bin2 for class
3 to 9 (c3–c9), Bin3 for class 10 to 14 (c10–c14), and Bin4 for the
smallest classes (c15–c40). Table 8 shows the number of features
and instances associated with the classes in different bins. One
observes that the numbers of positive and negative features as well
as data samples are highly skewed in imbalanced text data, espe-
cially for the minority classes in Bin4. In such cases, RF using sim-
ple random sample strategy to select subspaces has a high chance
of missing the informative features for the minority classes. On the
other hand, the proposed FORESTEXTER method uses stratified sam-
pling method and ensemble of SVM-based trees to force the classi-
fier to learn from the refined feature subspaces and data subspaces.
We note that standard RF cannot provides a balanced degree of
predictive accuracy over different bins: Bin1 has a relatively good
accuracy and Bin4 has a relatively poor accuracy.

However, our proposed FORESTEXTER algorithm is able to provide
a more balance degree of predictive accuracy for both minority and
majority classes against RF. As shown in Table 4, the overall
improvement of FORESTEXTER over RF is about 3.27% (FORESTEXTER

AUC: 0.9920 versus RF AUC: 0.9593). While the improvements of
FORESTEXTER over RF on Bin1, Bin2 and Bin3 are 0.43% (FORESTEXTER

AUC: 0.9968 versus RF AUC: 0.9925), 0.64% (FORESTEXTER AUC:
0.9963 versus RF AUC: 0.9899) and 4.10% (FORESTEXTER AUC:
0.9908 versus RF AUC: 0.9500), respectively (see Table 5). The
improvements of FORESTEXTER over RF are more significant on minor-
ity classes with limited number of instances. Our experimental
results indicate that it is advantageous to use the proposed tree
induction methods, including both feature subspace selection and
data splitting choice, to generate RF for imbalanced text
categorization.
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7. Conclusion

In this paper, we describe a new RF algorithm, FORESTEXTER, for
imbalanced text categorization. It consists of both stratified sam-
pling feature subspaces and learning SVM classifier while splitting
a tree node. The idea is to (i) ensure the feature subspace contains
informative features for majority and minority classes using a
stratified sampling method, and (ii) make the splitting at the nodes
stronger and fit the imbalanced data better. The proposed
approach identified two groups of features (positive and negative
features) and their term weights. The tree building algorithm then
stratified sample features from each group in building a tree. In
learning a tree model, we retrain SVM sub-classifiers using the
training data subsets and feature subspaces at the nodes to
successively refine the tree model. We have conducted extensive
experiments on three benchmark imbalanced text datasets (Reu-
ters-21578, Ohsumed, and imbalanced 20NG) to demonstrate the
effectiveness of this new algorithm. Experimental results have
shown that the classification performance of our proposed method
is better than those standard random forest and different variants
of SVM algorithms, in particular on the minority classes with extre-
mely small number of instances. Our future work includes investi-
gating more effective techniques to solve the feature weighting
problem for imbalanced text data. Furthermore, we will explore
applications of our approach to other tasks such as multi-label text
categorization.
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